* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2.5 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5a23c84252665b21eecc7e84 | Greatest subsequential sum | 5 | 302278 | greatest-subsequential-sum |
--description--
Given a sequence of integers, find a continuous subsequence which maximizes the sum of its elements, that is, the elements of no other single subsequence add up to a value larger than this one.
An empty subsequence is considered to have the sum of \( 0 \); thus if all elements are negative, the result must be the empty sequence.
--hints--
maximumSubsequence
should be a function.
assert(typeof maximumSubsequence == 'function');
maximumSubsequence([ 1, 2, -1, 3, 10, -10 ])
should return an array.
assert(Array.isArray(maximumSubsequence([1, 2, -1, 3, 10, -10])));
maximumSubsequence([ 1, 2, -1, 3, 10, -10 ])
should return [ 1, 2, -1, 3, 10 ]
.
assert.deepEqual(maximumSubsequence([1, 2, -1, 3, 10, -10]), [1, 2, -1, 3, 10]);
maximumSubsequence([ 0, 8, 10, -2, -4, -1, -5, -3 ])
should return [ 0, 8, 10 ]
.
assert.deepEqual(maximumSubsequence([0, 8, 10, -2, -4, -1, -5, -3]), [
0,
8,
10
]);
maximumSubsequence([ 9, 9, -10, 1 ])
should return [ 9, 9 ]
.
assert.deepEqual(maximumSubsequence([9, 9, -10, 1]), [9, 9]);
maximumSubsequence([ 7, 1, -5, -3, -8, 1 ])
should return [ 7, 1 ]
.
assert.deepEqual(maximumSubsequence([7, 1, -5, -3, -8, 1]), [7, 1]);
maximumSubsequence([ -3, 6, -1, 4, -4, -6 ])
should return [ 6, -1, 4 ]
.
assert.deepEqual(maximumSubsequence([-3, 6, -1, 4, -4, -6]), [6, -1, 4]);
maximumSubsequence([ -1, -2, 3, 5, 6, -2, -1, 4, -4, 2, -1 ])
should return [ 3, 5, 6, -2, -1, 4 ]
.
assert.deepEqual(maximumSubsequence([-1, -2, 3, 5, 6, -2, -1, 4, -4, 2, -1]), [
3,
5,
6,
-2,
-1,
4
]);
--seed--
--seed-contents--
function maximumSubsequence(population) {
}
--solutions--
function maximumSubsequence(population) {
function sumValues(arr) {
var result = 0;
for (var i = 0, len = arr.length; i < len; i++) {
result += arr[i];
}
return result;
}
var greatest;
var maxValue = 0;
for (var i = 0, len = population.length; i < len; i++) {
for (var j = i; j <= len; j++) {
var subsequence = population.slice(i, j);
var value = sumValues(subsequence);
if (value > maxValue) {
maxValue = value;
greatest = subsequence;
};
}
}
return greatest;
}