* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			63 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3f51000cf542c50ff08
 | ||
| title: 'Problem 137: Fibonacci golden nuggets'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301765
 | ||
| dashedName: problem-137-fibonacci-golden-nuggets
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Consider the infinite polynomial series $A_{F}(x) = xF_1 + x^2F_2 + x^3F_3 + \ldots$, where $F_k$ is the $k$th term in the Fibonacci sequence: $1, 1, 2, 3, 5, 8, \ldots$; that is, $F_k = F_{k − 1} + F_{k − 2}, F_1 = 1$ and $F_2 = 1$.
 | ||
| 
 | ||
| For this problem we shall be interested in values of $x$ for which $A_{F}(x)$ is a positive integer.
 | ||
| 
 | ||
| Surprisingly
 | ||
| 
 | ||
| $$\begin{align}
 | ||
| A_F(\frac{1}{2}) & = (\frac{1}{2}) × 1 + {(\frac{1}{2})}^2 × 1 + {(\frac{1}{2})}^3 × 2 + {(\frac{1}{2})}^4 × 3 + {(\frac{1}{2})}^5 × 5 + \cdots \\\\
 | ||
|                  & = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{5}{32} + \cdots \\\\
 | ||
|                  & = 2
 | ||
| \end{align}$$
 | ||
| 
 | ||
| The corresponding values of $x$ for the first five natural numbers are shown below.
 | ||
| 
 | ||
| | $x$                       | $A_F(x)$ |
 | ||
| |---------------------------|----------|
 | ||
| | $\sqrt{2} − 1$            | $1$      |
 | ||
| | $\frac{1}{2}$             | $2$      |
 | ||
| | $\frac{\sqrt{13} − 2}{3}$ | $3$      |
 | ||
| | $\frac{\sqrt{89} − 5}{8}$ | $4$      |
 | ||
| | $\frac{\sqrt{34} − 3}{5}$ | $5$      |
 | ||
| 
 | ||
| We shall call $A_F(x)$ a golden nugget if $x$ is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690.
 | ||
| 
 | ||
| Find the 15th golden nugget.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `goldenNugget()` should return `1120149658760`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(goldenNugget(), 1120149658760);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function goldenNugget() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| goldenNugget();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |