What is done in this PR:
- [x] Add `ConvertLayout`, `getSizePerThread` and `getShapePerCTA`
implementation for `SliceEncodingAttr`
- [x] Split `emitIndices` into two phases:
`emitBaseIndexForBlockedLayout` and `emitOffsetForBlockedLayout`
- [x] Add `ReduceOpConversion::matchAndRewriteBasic` implementation
- [x] Add `ReduceOpConversion::matchAndRewriteFast` implementation with
ptx instruction `shfl.sync`
- [x] Add support for scalar value in `StoreOpConversion`
- [x] Add Reduce1d and Reduce2d unit tests and pass all unit tests
Co-authored-by: Qingyi Liu <liuqingyi1993@gmail.com>
This PR helps to
1. Adapt the existing DotOp conversion to the design of the new
DotOperand layout,
2. Making the DotOp conversion work with both shared-layout inputs case
and dotoperand-layout inputs case for further upstream switch.
LLVM Conversion for Dot op.
Due to the lack of `convert_layout`, currently, the dot only supports
the following combination of operands
- `$a` in shared layout
- `$b` in shared layout
- `$c` in MMA layout(but only Splat-like, leaving the generic cases to
`convert_layout`)
This PR focus on `mma.16816` related logic support, leaving the other
cases to the following PR.
Co-authored-by: Philippe Tillet <phil@openai.com>
This code in this branch assumes the `src` operand in
`insert_slice_async` always aliases the result, which shouldn't hold for
generally cases but is just a workaround to make the pipeline pass work.
I'm also working on the complete analysis in another
[branch](https://github.com/openai/triton-mlir/tree/keren/analyze-slice).