A (potential) problem by directly adopting `tensor.extract_slice`.
Long story short, `tensor.extract_slice` is not aware of swizzling.
Consider the following shared memory tensor and its first three slices,
where each slice includes two tile (the loading unit of LDGSTS) of
elements. Currently, the tiles haven't been swizzled yet, so slicing
seems to work.
<img width="1219" alt="image"
src="https://user-images.githubusercontent.com/2306281/201833023-a7950705-2d50-4c0a-8527-7505261c3a3c.png">
However, now consider the following figure, which is the layout after
applying swizzling on the first figure.
<img width="1244" alt="image"
src="https://user-images.githubusercontent.com/2306281/201834824-7daae360-f5bc-4e6b-a921-20be3f294b78.png">
Note that on phase 2, all tiles have been swizzled out of their
originally slices. This implies that if we use the tile index after
slicing, we can no longer locate the correct tiles. For example, T3 was
in slice 1 but got swapped to slice 0 after swizzling.
Here's a more detailed explanation. In the current `triton-mlir` branch,
we only compute the relative offset of each tile. So T3's index in Slice
1 is *1*, and it will be swizzled using *1* and *phase id*. Whereas the
correct index of T3 should be *3*, which is the relative offset to the
beginning of the shared memory tensor being swizzled, and T3 should be
swizzled using *3* and *phase id*.
This PR proposes a hacky solution for this problem. We restore the
"correct" offset of each tile by **assuming that slicing on a specific
dim only happens at most once on the output of insert_slice_async**. I
admit it's risky and fragile.
The other possible solution is adopting cutlass' swizzling logic that
limits the indices being swizzled in a "bounding box" that matches the
mma instruction executes. For example, in the following tensor layout,
each 4x4 submatrix is a minimum swizzling unit, and the entire tensor
represents the tensor layout of operand A in `mma.16816`.
<img width="565" alt="image"
src="https://user-images.githubusercontent.com/2306281/201836879-4ca7824b-530c-4a06-a3d5-1e74a2de1b42.png">
Co-authored-by: Phil Tillet <phil@openai.com>
Swizzling is no longer implemented as a separate pass. It is instead
done in a specialized constructor of SharedEncodingAttr, and tested via
google tests instead of triton-opt + filecheck.
In the future we may want to implement it as a pass again once we have
an additional dialect between TritonGPU and LLVM.
Validated hackily by manually modifying the reduction .ttgir in my local
cache. There will be a follow-up PR adding some better testing
infrastructure to test out conversions and reductions on arbitrary
layouts.
## Features
- Allow taking a block of tensor slice, as long as each dimension is
contiguous (unit stride).
- Fix some problems in `insert_slice_async`'s semantic.
- More general verification for ops that return shared layout encoding.
## Known Limitations
- `insert_slice_async` still uses the old semantic. May submit another
PR later to support similar semantic like `tensor.extract_slice`.
- No encoding verification for `tensor.extract_slice`.
- 3d tensor ops are broken.
- Strided accesses are not allowed.
- May cause a little performance slowdown since we are passing strides
as values but not constants (e.g., int).
It would be difficult to pass strides as attributes when we have control
flows. A block argument is possible to accept tensors with different
strides.
This adds a `DialectInlinerInterface` to the Triton dialect. This, along
with a few other minor semantic changes, fixes our tests on call
instructions. Also added the option to provide use an "LLVM_SYSPATH"
environment variable to link against locally build of LLVM; this was
useful for debugging this issue.
1. Rewrite code generation of insert_slice_async.
2. Correct the wrong index passed to extract_slice in pipeline.
3. Add a prologue in pipeline to wait for dangling cp.asyncs.
4. Move scf to cf conversion inside TritonGPUToLLVM because we need to
perform membar before scf to cf. It shouldn't be a technical limitation
and could be improved by a more general membar analysis.
5. Use an attribute to memoize the shared memory size and support
dynamic shared memory.
6. Prevent the combine pass to reorder insert_slice and extract_slice
across async_wait
Co-authored-by: Superjomn <yanchunwei@outlook.com>
What is done in this PR:
- [x] Add `ConvertLayout`, `getSizePerThread` and `getShapePerCTA`
implementation for `SliceEncodingAttr`
- [x] Split `emitIndices` into two phases:
`emitBaseIndexForBlockedLayout` and `emitOffsetForBlockedLayout`
- [x] Add `ReduceOpConversion::matchAndRewriteBasic` implementation
- [x] Add `ReduceOpConversion::matchAndRewriteFast` implementation with
ptx instruction `shfl.sync`
- [x] Add support for scalar value in `StoreOpConversion`
- [x] Add Reduce1d and Reduce2d unit tests and pass all unit tests
Co-authored-by: Qingyi Liu <liuqingyi1993@gmail.com>
This PR helps to
1. Adapt the existing DotOp conversion to the design of the new
DotOperand layout,
2. Making the DotOp conversion work with both shared-layout inputs case
and dotoperand-layout inputs case for further upstream switch.
LLVM Conversion for Dot op.
Due to the lack of `convert_layout`, currently, the dot only supports
the following combination of operands
- `$a` in shared layout
- `$b` in shared layout
- `$c` in MMA layout(but only Splat-like, leaving the generic cases to
`convert_layout`)
This PR focus on `mma.16816` related logic support, leaving the other
cases to the following PR.
Co-authored-by: Philippe Tillet <phil@openai.com>
This code in this branch assumes the `src` operand in
`insert_slice_async` always aliases the result, which shouldn't hold for
generally cases but is just a workaround to make the pipeline pass work.
I'm also working on the complete analysis in another
[branch](https://github.com/openai/triton-mlir/tree/keren/analyze-slice).
This PR does the following things:
- Code refactoring on Load and Store op codegen, rewrite with same logic
and share much code
- Support the vectorized load/store
This PR both simplifies the layout conversion simplification algorithm, and also improves it to make it work with vectorized element-wise ops. The conversion optimizer still has a lot of room for improvements, and other PRs will address its limitations (ideally via some sort of explicit cost model)