Compare commits

...

24 Commits

Author SHA1 Message Date
Peter Zhokhov
cddd97bd2d remove noop code 2019-01-09 11:21:22 -08:00
Timothy Lee
146bbf886b Removed code that prevented changes to actor loss when training with demos (#740) 2018-11-29 17:28:08 -08:00
pzhokhov
f3a5abaeeb added smoke tests of ddpg (#734) 2018-11-26 17:57:25 -08:00
pzhokhov
97e039127f Fix ppo2 with MPI bug, other minor fixes (#735)
* joshim5 changes (width and height to WarpFrame wrapper)

* match network output with action distribution via a linear layer only if necessary (#167)

* support color vs. grayscale option in WarpFrame wrapper (#166)

* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions

* fixing test failures

* ppo2 with microbatches (#168)

* pass microbatch_size to the model during construction

* microbatch fixes and test (#169)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* Peterz joshim5 subclass ppo2 model (#170)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* subclassing the model to make microbatched version of model WIP

* made microbatched model a subclass of ppo2 Model

* flake8 complaint

* mpi-less ppo2 (resolving merge conflict)

* flake8 and mpi4py imports in ppo2/model.py

* more un-mpying

* merge master

* updates to the benchmark viewer code + autopep8 (#184)

* viz docs and syntactic sugar wip

* update viewer yaml to use persistent volume claims

* move plot_util to baselines.common, update links

* use 1Tb hard drive for results viewer

* small updates to benchmark vizualizer code

* autopep8

* autopep8

* any folder can be a benchmark

* massage games image a little bit

* fixed --preload option in app.py

* remove preload from run_viewer.sh

* remove pdb breakpoints

* update bench-viewer.yaml

* fixed bug (#185)

* fixed bug 

it's wrong to do the else statement, because no other nodes would start.

* changed the fix slightly
2018-11-26 17:56:41 -08:00
pzhokhov
25ecb64821 fixed issue with wrong output layer variable names in ddpg (#733) 2018-11-26 16:30:37 -08:00
Prabhat Nagarajan
7dc6bc7c70 fixes typo (#732)
* fixes typo

* adds apostrophe
2018-11-26 16:19:09 -08:00
Christopher Hesse
7139a66d33 Merge pull request #728 from openai/christopherhesse-patch-1
Update README.md
2018-11-21 15:00:51 -08:00
Christopher Hesse
8607dca99e Update README.md 2018-11-21 14:57:10 -08:00
pzhokhov
9f9835fe38 Update __init__.py 2018-11-21 12:51:15 -08:00
sedand
d3fed181b5 Fixed comment on example usage in jupyter-notebook (#396)
Cause of error: Import name must be results_plotter, not log_viewer.
2018-11-14 14:50:59 -08:00
Roman Ring
339d5640b9 add docs for layer_norm param in DQN baseline (#107) 2018-11-14 12:22:42 -08:00
Buck Shlegeris
a75bc37a40 fix typo in a comment (#161) 2018-11-14 12:20:55 -08:00
Peter Zhokhov
87b3a04a38 autopep8 2018-11-14 12:16:53 -08:00
Brent Komer
c5b1a1b643 typo fix (#230) 2018-11-13 13:08:32 -08:00
JohannesAck
c59a10947d Parameter documentation for tf_util.function (#349)
* Added parameter documentation

This parameter was thus far not documented and is non-intuitive when unfamiliar with tf.

* Added parameter documentation
2018-11-13 13:03:48 -08:00
James Alan Preiss
5cd66010dc case-insensitive sort for human-readable logger (#289) 2018-11-13 11:09:11 -08:00
Xiaoquan Kong
0a13da8dfe Change variable name from inpt to input_ (#297) 2018-11-13 11:08:21 -08:00
Vladislav Zavadskyy
18b6390be6 Typo fix (#287) 2018-11-13 11:03:55 -08:00
pzhokhov
52255beda5 microbatches in ppo2, custom frame size in WarpFrame, matching fc layer only when needed (#707)
* joshim5 changes (width and height to WarpFrame wrapper)

* match network output with action distribution via a linear layer only if necessary (#167)

* support color vs. grayscale option in WarpFrame wrapper (#166)

* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions

* fixing test failures

* ppo2 with microbatches (#168)

* pass microbatch_size to the model during construction

* microbatch fixes and test (#169)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* Peterz joshim5 subclass ppo2 model (#170)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* subclassing the model to make microbatched version of model WIP

* made microbatched model a subclass of ppo2 Model

* flake8 complaint

* mpi-less ppo2 (resolving merge conflict)

* flake8 and mpi4py imports in ppo2/model.py

* more un-mpying
2018-11-09 11:18:05 -08:00
AurelianTactics
d80acbb4d1 Removing print spam from Wrapper (#705)
* DDPG has unused 'seed' argument

DeepQ, PPO2, ACER, trpo_mpi, A2C, and ACKTR have the code for:

```
from baselines.common import set_global_seeds
...
def learn(...):
...
   set_global_seeds(seed)
```

DDPG has the argument 'seed=None' but doesn't have the two lines of code needed to set the global seeds.

* DDPG: duplicate variable assignment

variable nb_actions assigned same value twice in space of 10 lines
nb_actions = env.action_space.shape[-1]

* DDPG: noise_type 'normal_x' and 'ou_x' cause assert

noise_type default 'adaptive-param_0.2' works but the arguments that change from parameter noise to actor noise (like 'normal_0.2' and 'ou_0.2' cause an assert message and DDPG not to run. Issue is noise following block:
'''
        if self.action_noise is not None and apply_noise:
            noise = self.action_noise()
            assert noise.shape == action.shape
            action += noise
'''

noise is not nested: [number_of_actions]
actions is nested: [[number_of_actions]]
Can either nest noise or unnest actions

* Revert "DDPG: noise_type 'normal_x' and 'ou_x' cause assert"

* DDPG: noise_type 'normal_x' and 'ou_x' cause AssertionError

noise_type default 'adaptive-param_0.2' works but the arguments that change from parameter noise to actor noise (like 'normal_0.2' and 'ou_0.2') cause an assert message and DDPG not to run. Issue is the following block:
'''
        if self.action_noise is not None and apply_noise:
            noise = self.action_noise()
            assert noise.shape == action.shape
            action += noise
'''

noise is not nested: [number_of_actions]
action is nested: [[number_of_actions]]
Hence the shapes do not pass the assert line even though the action += noise line is correct

* Removing Print Spam from Wrapper

Prints a line every time a video is saved or not saved. Seems unnecessary.
2018-11-08 10:13:07 -08:00
pzhokhov
556b198454 Internal minifixes (#694)
* joshim5 changes (width and height to WarpFrame wrapper)

* match network output with action distribution via a linear layer only if necessary (#167)

* support color vs. grayscale option in WarpFrame wrapper (#166)

* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions

* fixing test failures
2018-11-08 10:11:45 -08:00
pzhokhov
cc88804042 Update viz.ipynb 2018-11-07 17:20:52 -08:00
pzhokhov
c14d307834 move viz docs to a notebook entirely (#704)
* viz docs

* writing vizualization docs

* documenting plot_util

* docstrings in plot_util

* autopep8 and flake8

* spelling (using default vim spellchecker and ingoring things like dataframe, docstring and etc)

* rephrased viz.md a little bit

* more examples of viz code usage in the docs

* replaced vizualization doc with notebook
2018-11-07 17:19:42 -08:00
pzhokhov
0b71d4c6c4 remove unused args of DDPG class (#702) 2018-11-07 17:19:25 -08:00
26 changed files with 1248 additions and 405 deletions

View File

@@ -1,3 +1,5 @@
**Status:** Active (under active development, breaking changes may occur)
<img src="data/logo.jpg" width=25% align="right" /> [![Build status](https://travis-ci.org/openai/baselines.svg?branch=master)](https://travis-ci.org/openai/baselines)
# Baselines
@@ -110,7 +112,7 @@ python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --
*NOTE:* At the moment Mujoco training uses VecNormalize wrapper for the environment which is not being saved correctly; so loading the models trained on Mujoco will not work well if the environment is recreated. If necessary, you can work around that by replacing RunningMeanStd by TfRunningMeanStd in [baselines/common/vec_env/vec_normalize.py](baselines/common/vec_env/vec_normalize.py#L12). This way, mean and std of environment normalizing wrapper will be saved in tensorflow variables and included in the model file; however, training is slower that way - hence not including it by default
## Loading and vizualizing learning curves and other training metrics
See [here](docs/viz/viz.md) for instructions on how to load and display the training data.
See [here](docs/viz/viz.ipynb) for instructions on how to load and display the training data.
## Subpackages

View File

@@ -37,9 +37,6 @@ class Runner(AbstractEnvRunner):
obs, rewards, dones, _ = self.env.step(actions)
self.states = states
self.dones = dones
for n, done in enumerate(dones):
if done:
self.obs[n] = self.obs[n]*0
self.obs = obs
mb_rewards.append(rewards)
mb_dones.append(self.dones)

View File

@@ -72,8 +72,8 @@ class EpisodicLifeEnv(gym.Wrapper):
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condtion for a few frames
# so its important to keep lives > 0, so that we only reset once
# for Qbert sometimes we stay in lives == 0 condition for a few frames
# so it's important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
@@ -129,18 +129,26 @@ class ClipRewardEnv(gym.RewardWrapper):
return np.sign(reward)
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env):
def __init__(self, env, width=84, height=84, grayscale=True):
"""Warp frames to 84x84 as done in the Nature paper and later work."""
gym.ObservationWrapper.__init__(self, env)
self.width = 84
self.height = 84
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.height, self.width, 1), dtype=np.uint8)
self.width = width
self.height = height
self.grayscale = grayscale
if self.grayscale:
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.height, self.width, 1), dtype=np.uint8)
else:
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.height, self.width, 3), dtype=np.uint8)
def observation(self, frame):
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
if self.grayscale:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
return frame[:, :, None]
if self.grayscale:
frame = np.expand_dims(frame, -1)
return frame
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
@@ -156,7 +164,7 @@ class FrameStack(gym.Wrapper):
self.k = k
self.frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=env.observation_space.dtype)
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)
def reset(self):
ob = self.env.reset()
@@ -197,7 +205,7 @@ class LazyFrames(object):
def _force(self):
if self._out is None:
self._out = np.concatenate(self._frames, axis=2)
self._out = np.concatenate(self._frames, axis=-1)
self._frames = None
return self._out

View File

@@ -62,7 +62,7 @@ class CategoricalPdType(PdType):
def pdclass(self):
return CategoricalPd
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
pdparam = _matching_fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
return self.pdfromflat(pdparam), pdparam
def param_shape(self):
@@ -82,7 +82,7 @@ class MultiCategoricalPdType(PdType):
return MultiCategoricalPd(self.ncats, flat)
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
pdparam = fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
pdparam = _matching_fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
return self.pdfromflat(pdparam), pdparam
def param_shape(self):
@@ -99,7 +99,7 @@ class DiagGaussianPdType(PdType):
return DiagGaussianPd
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
mean = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
return self.pdfromflat(pdparam), mean
@@ -123,7 +123,7 @@ class BernoulliPdType(PdType):
def sample_dtype(self):
return tf.int32
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
return self.pdfromflat(pdparam), pdparam
# WRONG SECOND DERIVATIVES
@@ -345,3 +345,9 @@ def validate_probtype(probtype, pdparam):
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
print('ok on', probtype, pdparam)
def _matching_fc(tensor, name, size, init_scale, init_bias):
if tensor.shape[-1] == size:
return tensor
else:
return fc(tensor, name, size, init_scale=init_scale, init_bias=init_bias)

View File

@@ -332,7 +332,7 @@ def plot_results(
xys = gresults[group]
if not any(xys):
continue
color = COLORS[groups.index(group)]
color = COLORS[groups.index(group) % len(COLORS)]
origxs = [xy[0] for xy in xys]
minxlen = min(map(len, origxs))
def allequal(qs):

View File

@@ -132,10 +132,8 @@ class MovieRecord(gym.Wrapper):
self.epcount = 0
def reset(self):
if self.epcount % self.k == 0:
print('saving movie this episode', self.savedir)
self.env.unwrapped.movie_path = self.savedir
else:
print('not saving this episode')
self.env.unwrapped.movie_path = None
self.env.unwrapped.movie = None
self.epcount += 1

View File

@@ -103,9 +103,9 @@ def test_coexistence(learn_fn, network_fn):
kwargs.update(learn_kwargs[learn_fn])
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
make_session(make_default=True, graph=tf.Graph());
make_session(make_default=True, graph=tf.Graph())
model1 = learn(seed=1)
make_session(make_default=True, graph=tf.Graph());
make_session(make_default=True, graph=tf.Graph())
model2 = learn(seed=2)
model1.step(env.observation_space.sample())

View File

@@ -165,6 +165,10 @@ def function(inputs, outputs, updates=None, givens=None):
outputs: [tf.Variable] or tf.Variable
list of outputs or a single output to be returned from function. Returned
value will also have the same shape.
updates: [tf.Operation] or tf.Operation
list of update functions or single update function that will be run whenever
the function is called. The return is ignored.
"""
if isinstance(outputs, list):
return _Function(inputs, outputs, updates, givens=givens)

View File

@@ -67,7 +67,6 @@ class DDPG(object):
def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None,
gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True,
batch_size=128, observation_range=(-5., 5.), action_range=(-1., 1.), return_range=(-np.inf, np.inf),
adaptive_param_noise=True, adaptive_param_noise_policy_threshold=.1,
critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.):
# Inputs.
self.obs0 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs0')
@@ -186,7 +185,7 @@ class DDPG(object):
normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1])
self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
if self.critic_l2_reg > 0.:
critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name]
critic_reg_vars = [var for var in self.critic.trainable_vars if var.name.endswith('/w:0') and 'output' not in var.name]
for var in critic_reg_vars:
logger.info(' regularizing: {}'.format(var.name))
logger.info(' applying l2 regularization with {}'.format(self.critic_l2_reg))

View File

@@ -42,7 +42,7 @@ class Critic(Model):
with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE):
x = tf.concat([obs, action], axis=-1) # this assumes observation and action can be concatenated
x = self.network_builder(x)
x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3), name='output')
return x
@property

View File

@@ -0,0 +1,17 @@
from baselines.run import main as M
def _run(argstr):
M(('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr).split(' '))
def test_popart():
_run('--normalize_returns=True --popart=True')
def test_noise_normal():
_run('--noise_type=normal_0.1')
def test_noise_ou():
_run('--noise_type=ou_0.1')
def test_noise_adaptive():
_run('--noise_type=adaptive-param_0.2,normal_0.1')

View File

@@ -5,4 +5,4 @@ from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
def wrap_atari_dqn(env):
from baselines.common.atari_wrappers import wrap_deepmind
return wrap_deepmind(env, frame_stack=True, scale=True)
return wrap_deepmind(env, frame_stack=True, scale=False)

View File

@@ -33,7 +33,7 @@ The functions in this file can are used to create the following functions:
stochastic: bool
if set to False all the actions are always deterministic (default False)
update_eps_ph: float
update epsilon a new value, if negative not update happens
update epsilon to a new value, if negative no update happens
(default: no update)
reset_ph: bool
reset the perturbed policy by sampling a new perturbation

View File

@@ -2,9 +2,9 @@ import tensorflow as tf
import tensorflow.contrib.layers as layers
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False):
def _mlp(hiddens, input_, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = inpt
out = input_
for hidden in hiddens:
out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None)
if layer_norm:
@@ -21,6 +21,9 @@ def mlp(hiddens=[], layer_norm=False):
----------
hiddens: [int]
list of sizes of hidden layers
layer_norm: bool
if true applies layer normalization for every layer
as described in https://arxiv.org/abs/1607.06450
Returns
-------
@@ -30,9 +33,9 @@ def mlp(hiddens=[], layer_norm=False):
return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
def _cnn_to_mlp(convs, hiddens, dueling, input_, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = inpt
out = input_
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,
@@ -72,7 +75,7 @@ def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
Parameters
----------
convs: [(int, int int)]
convs: [(int, int, int)]
list of convolutional layers in form of
(num_outputs, kernel_size, stride)
hiddens: [int]
@@ -80,6 +83,9 @@ def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
dueling: bool
if true double the output MLP to compute a baseline
for action scores
layer_norm: bool
if true applies layer normalization for every layer
as described in https://arxiv.org/abs/1607.06450
Returns
-------

View File

@@ -367,8 +367,6 @@ class DDPG(object):
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
Q_grads_tf = tf.gradients(self.Q_loss_tf, self._vars('main/Q'))
pi_grads_tf = tf.gradients(self.pi_loss_tf, self._vars('main/pi'))
assert len(self._vars('main/Q')) == len(Q_grads_tf)

View File

@@ -54,7 +54,7 @@ class HumanOutputFormat(KVWriter, SeqWriter):
# Write out the data
dashes = '-' * (keywidth + valwidth + 7)
lines = [dashes]
for (key, val) in sorted(key2str.items()):
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
lines.append('| %s%s | %s%s |' % (
key,
' ' * (keywidth - len(key)),

View File

@@ -97,7 +97,7 @@ def learn(env, policy_fn, *,
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule
clip_param = clip_param * lrmult # Annealed cliping parameter epislon
clip_param = clip_param * lrmult # Annealed clipping parameter epsilon
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])

View File

@@ -0,0 +1,76 @@
import tensorflow as tf
import numpy as np
from baselines.ppo2.model import Model
class MicrobatchedModel(Model):
"""
Model that does training one microbatch at a time - when gradient computation
on the entire minibatch causes some overflow
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size):
self.nmicrobatches = nbatch_train // microbatch_size
self.microbatch_size = microbatch_size
assert nbatch_train % microbatch_size == 0, 'microbatch_size ({}) should divide nbatch_train ({}) evenly'.format(microbatch_size, nbatch_train)
super().__init__(
policy=policy,
ob_space=ob_space,
ac_space=ac_space,
nbatch_act=nbatch_act,
nbatch_train=microbatch_size,
nsteps=nsteps,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm)
self.grads_ph = [tf.placeholder(dtype=g.dtype, shape=g.shape) for g in self.grads]
grads_ph_and_vars = list(zip(self.grads_ph, self.var))
self._apply_gradients_op = self.trainer.apply_gradients(grads_ph_and_vars)
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
assert states is None, "microbatches with recurrent models are not supported yet"
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
# Returns = R + yV(s')
advs = returns - values
# Normalize the advantages
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
# Initialize empty list for per-microbatch stats like pg_loss, vf_loss, entropy, approxkl (whatever is in self.stats_list)
stats_vs = []
for microbatch_idx in range(self.nmicrobatches):
_sli = range(microbatch_idx * self.microbatch_size, (microbatch_idx+1) * self.microbatch_size)
td_map = {
self.train_model.X: obs[_sli],
self.A:actions[_sli],
self.ADV:advs[_sli],
self.R:returns[_sli],
self.CLIPRANGE:cliprange,
self.OLDNEGLOGPAC:neglogpacs[_sli],
self.OLDVPRED:values[_sli]
}
# Compute gradient on a microbatch (note that variables do not change here) ...
grad_v, stats_v = self.sess.run([self.grads, self.stats_list], td_map)
if microbatch_idx == 0:
sum_grad_v = grad_v
else:
# .. and add to the total of the gradients
for i, g in enumerate(grad_v):
sum_grad_v[i] += g
stats_vs.append(stats_v)
feed_dict = {ph: sum_g / self.nmicrobatches for ph, sum_g in zip(self.grads_ph, sum_grad_v)}
feed_dict[self.LR] = lr
# Update variables using average of the gradients
self.sess.run(self._apply_gradients_op, feed_dict)
# Return average of the stats
return np.mean(np.array(stats_vs), axis=0).tolist()

156
baselines/ppo2/model.py Normal file
View File

@@ -0,0 +1,156 @@
import tensorflow as tf
import functools
from baselines.common.tf_util import get_session, save_variables, load_variables
from baselines.common.tf_util import initialize
try:
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
from mpi4py import MPI
from baselines.common.mpi_util import sync_from_root
except ImportError:
MPI = None
class Model(object):
"""
We use this object to :
__init__:
- Creates the step_model
- Creates the train_model
train():
- Make the training part (feedforward and retropropagation of gradients)
save/load():
- Save load the model
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size=None):
self.sess = sess = get_session()
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
# CREATE OUR TWO MODELS
# act_model that is used for sampling
act_model = policy(nbatch_act, 1, sess)
# Train model for training
if microbatch_size is None:
train_model = policy(nbatch_train, nsteps, sess)
else:
train_model = policy(microbatch_size, nsteps, sess)
# CREATE THE PLACEHOLDERS
self.A = A = train_model.pdtype.sample_placeholder([None])
self.ADV = ADV = tf.placeholder(tf.float32, [None])
self.R = R = tf.placeholder(tf.float32, [None])
# Keep track of old actor
self.OLDNEGLOGPAC = OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
# Keep track of old critic
self.OLDVPRED = OLDVPRED = tf.placeholder(tf.float32, [None])
self.LR = LR = tf.placeholder(tf.float32, [])
# Cliprange
self.CLIPRANGE = CLIPRANGE = tf.placeholder(tf.float32, [])
neglogpac = train_model.pd.neglogp(A)
# Calculate the entropy
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
entropy = tf.reduce_mean(train_model.pd.entropy())
# CALCULATE THE LOSS
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
# Clip the value to reduce variability during Critic training
# Get the predicted value
vpred = train_model.vf
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
# Unclipped value
vf_losses1 = tf.square(vpred - R)
# Clipped value
vf_losses2 = tf.square(vpredclipped - R)
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
# Calculate ratio (pi current policy / pi old policy)
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
# Defining Loss = - J is equivalent to max J
pg_losses = -ADV * ratio
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
# Final PG loss
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
# Total loss
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
# UPDATE THE PARAMETERS USING LOSS
# 1. Get the model parameters
params = tf.trainable_variables('ppo2_model')
# 2. Build our trainer
if MPI is not None:
self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
else:
self.trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
# 3. Calculate the gradients
grads_and_var = self.trainer.compute_gradients(loss, params)
grads, var = zip(*grads_and_var)
if max_grad_norm is not None:
# Clip the gradients (normalize)
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads_and_var = list(zip(grads, var))
# zip aggregate each gradient with parameters associated
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
self.grads = grads
self.var = var
self._train_op = self.trainer.apply_gradients(grads_and_var)
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
self.stats_list = [pg_loss, vf_loss, entropy, approxkl, clipfrac]
self.train_model = train_model
self.act_model = act_model
self.step = act_model.step
self.value = act_model.value
self.initial_state = act_model.initial_state
self.save = functools.partial(save_variables, sess=sess)
self.load = functools.partial(load_variables, sess=sess)
initialize()
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
if MPI is not None:
sync_from_root(sess, global_variables) #pylint: disable=E1101
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
# Returns = R + yV(s')
advs = returns - values
# Normalize the advantages
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
td_map = {
self.train_model.X : obs,
self.A : actions,
self.ADV : advs,
self.R : returns,
self.LR : lr,
self.CLIPRANGE : cliprange,
self.OLDNEGLOGPAC : neglogpacs,
self.OLDVPRED : values
}
if states is not None:
td_map[self.train_model.S] = states
td_map[self.train_model.M] = masks
return self.sess.run(
self.stats_list + [self._train_op],
td_map
)[:-1]

View File

@@ -1,226 +1,17 @@
import os
import time
import functools
import numpy as np
import os.path as osp
import tensorflow as tf
from baselines import logger
from collections import deque
from baselines.common import explained_variance, set_global_seeds
from baselines.common.policies import build_policy
from baselines.common.runners import AbstractEnvRunner
from baselines.common.tf_util import get_session, save_variables, load_variables
try:
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
from mpi4py import MPI
from baselines.common.mpi_util import sync_from_root
except ImportError:
MPI = None
from baselines.ppo2.runner import Runner
from baselines.common.tf_util import initialize
class Model(object):
"""
We use this object to :
__init__:
- Creates the step_model
- Creates the train_model
train():
- Make the training part (feedforward and retropropagation of gradients)
save/load():
- Save load the model
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm):
sess = get_session()
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
# CREATE OUR TWO MODELS
# act_model that is used for sampling
act_model = policy(nbatch_act, 1, sess)
# Train model for training
train_model = policy(nbatch_train, nsteps, sess)
# CREATE THE PLACEHOLDERS
A = train_model.pdtype.sample_placeholder([None])
ADV = tf.placeholder(tf.float32, [None])
R = tf.placeholder(tf.float32, [None])
# Keep track of old actor
OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
# Keep track of old critic
OLDVPRED = tf.placeholder(tf.float32, [None])
LR = tf.placeholder(tf.float32, [])
# Cliprange
CLIPRANGE = tf.placeholder(tf.float32, [])
neglogpac = train_model.pd.neglogp(A)
# Calculate the entropy
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
entropy = tf.reduce_mean(train_model.pd.entropy())
# CALCULATE THE LOSS
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
# Clip the value to reduce variability during Critic training
# Get the predicted value
vpred = train_model.vf
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
# Unclipped value
vf_losses1 = tf.square(vpred - R)
# Clipped value
vf_losses2 = tf.square(vpredclipped - R)
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
# Calculate ratio (pi current policy / pi old policy)
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
# Defining Loss = - J is equivalent to max J
pg_losses = -ADV * ratio
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
# Final PG loss
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
# Total loss
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
# UPDATE THE PARAMETERS USING LOSS
# 1. Get the model parameters
params = tf.trainable_variables('ppo2_model')
# 2. Build our trainer
if MPI is not None:
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
else:
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
# 3. Calculate the gradients
grads_and_var = trainer.compute_gradients(loss, params)
grads, var = zip(*grads_and_var)
if max_grad_norm is not None:
# Clip the gradients (normalize)
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads_and_var = list(zip(grads, var))
# zip aggregate each gradient with parameters associated
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
_train = trainer.apply_gradients(grads_and_var)
def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
# Returns = R + yV(s')
advs = returns - values
# Normalize the advantages
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
td_map = {train_model.X:obs, A:actions, ADV:advs, R:returns, LR:lr,
CLIPRANGE:cliprange, OLDNEGLOGPAC:neglogpacs, OLDVPRED:values}
if states is not None:
td_map[train_model.S] = states
td_map[train_model.M] = masks
return sess.run(
[pg_loss, vf_loss, entropy, approxkl, clipfrac, _train],
td_map
)[:-1]
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
self.train = train
self.train_model = train_model
self.act_model = act_model
self.step = act_model.step
self.value = act_model.value
self.initial_state = act_model.initial_state
self.save = functools.partial(save_variables, sess=sess)
self.load = functools.partial(load_variables, sess=sess)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
initialize()
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
if MPI is not None:
sync_from_root(sess, global_variables) #pylint: disable=E1101
class Runner(AbstractEnvRunner):
"""
We use this object to make a mini batch of experiences
__init__:
- Initialize the runner
run():
- Make a mini batch
"""
def __init__(self, *, env, model, nsteps, gamma, lam):
super().__init__(env=env, model=model, nsteps=nsteps)
# Lambda used in GAE (General Advantage Estimation)
self.lam = lam
# Discount rate
self.gamma = gamma
def run(self):
# Here, we init the lists that will contain the mb of experiences
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
mb_states = self.states
epinfos = []
# For n in range number of steps
for _ in range(self.nsteps):
# Given observations, get action value and neglopacs
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
mb_neglogpacs.append(neglogpacs)
mb_dones.append(self.dones)
# Take actions in env and look the results
# Infos contains a ton of useful informations
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
for info in infos:
maybeepinfo = info.get('episode')
if maybeepinfo: epinfos.append(maybeepinfo)
mb_rewards.append(rewards)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_actions = np.asarray(mb_actions)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
# discount/bootstrap off value fn
mb_returns = np.zeros_like(mb_rewards)
mb_advs = np.zeros_like(mb_rewards)
lastgaelam = 0
for t in reversed(range(self.nsteps)):
if t == self.nsteps - 1:
nextnonterminal = 1.0 - self.dones
nextvalues = last_values
else:
nextnonterminal = 1.0 - mb_dones[t+1]
nextvalues = mb_values[t+1]
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
mb_returns = mb_advs + mb_values
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
mb_states, epinfos)
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
def sf01(arr):
"""
swap and then flatten axes 0 and 1
"""
s = arr.shape
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
def constfn(val):
def f(_):
@@ -230,7 +21,7 @@ def constfn(val):
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
save_interval=0, load_path=None, **network_kwargs):
save_interval=0, load_path=None, model_fn=None, **network_kwargs):
'''
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
@@ -308,10 +99,14 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
nbatch_train = nbatch // nminibatches
# Instantiate the model object (that creates act_model and train_model)
make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
if model_fn is None:
from baselines.ppo2.model import Model
model_fn = Model
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm)
model = make_model()
if load_path is not None:
model.load(load_path)
# Instantiate the runner object
@@ -319,8 +114,6 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
if eval_env is not None:
eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam)
epinfobuf = deque(maxlen=100)
if eval_env is not None:
eval_epinfobuf = deque(maxlen=100)

76
baselines/ppo2/runner.py Normal file
View File

@@ -0,0 +1,76 @@
import numpy as np
from baselines.common.runners import AbstractEnvRunner
class Runner(AbstractEnvRunner):
"""
We use this object to make a mini batch of experiences
__init__:
- Initialize the runner
run():
- Make a mini batch
"""
def __init__(self, *, env, model, nsteps, gamma, lam):
super().__init__(env=env, model=model, nsteps=nsteps)
# Lambda used in GAE (General Advantage Estimation)
self.lam = lam
# Discount rate
self.gamma = gamma
def run(self):
# Here, we init the lists that will contain the mb of experiences
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
mb_states = self.states
epinfos = []
# For n in range number of steps
for _ in range(self.nsteps):
# Given observations, get action value and neglopacs
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
mb_neglogpacs.append(neglogpacs)
mb_dones.append(self.dones)
# Take actions in env and look the results
# Infos contains a ton of useful informations
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
for info in infos:
maybeepinfo = info.get('episode')
if maybeepinfo: epinfos.append(maybeepinfo)
mb_rewards.append(rewards)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_actions = np.asarray(mb_actions)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
# discount/bootstrap off value fn
mb_returns = np.zeros_like(mb_rewards)
mb_advs = np.zeros_like(mb_rewards)
lastgaelam = 0
for t in reversed(range(self.nsteps)):
if t == self.nsteps - 1:
nextnonterminal = 1.0 - self.dones
nextvalues = last_values
else:
nextnonterminal = 1.0 - mb_dones[t+1]
nextvalues = mb_values[t+1]
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
mb_returns = mb_advs + mb_values
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
mb_states, epinfos)
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
def sf01(arr):
"""
swap and then flatten axes 0 and 1
"""
s = arr.shape
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])

View File

@@ -0,0 +1,34 @@
import gym
import tensorflow as tf
import numpy as np
from functools import partial
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.tf_util import make_session
from baselines.ppo2.ppo2 import learn
from baselines.ppo2.microbatched_model import MicrobatchedModel
def test_microbatches():
def env_fn():
env = gym.make('CartPole-v0')
env.seed(0)
return env
learn_fn = partial(learn, network='mlp', nsteps=32, total_timesteps=32, seed=0)
env_ref = DummyVecEnv([env_fn])
sess_ref = make_session(make_default=True, graph=tf.Graph())
learn_fn(env=env_ref)
vars_ref = {v.name: sess_ref.run(v) for v in tf.trainable_variables()}
env_test = DummyVecEnv([env_fn])
sess_test = make_session(make_default=True, graph=tf.Graph())
learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}
for v in vars_ref:
np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=1e-3)
if __name__ == '__main__':
test_microbatches()

View File

@@ -5,7 +5,7 @@ matplotlib.use('TkAgg') # Can change to 'Agg' for non-interactive mode
import matplotlib.pyplot as plt
plt.rcParams['svg.fonttype'] = 'none'
from baselines.bench.monitor import load_results
from baselines.common import plot_util
X_TIMESTEPS = 'timesteps'
X_EPISODES = 'episodes'
@@ -16,7 +16,7 @@ POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME]
EPISODES_WINDOW = 100
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink',
'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise',
'darkgreen', 'tan', 'salmon', 'gold', 'lightpurple', 'darkred', 'darkblue']
'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']
def rolling_window(a, window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
@@ -50,7 +50,7 @@ def plot_curves(xy_list, xaxis, yaxis, title):
maxx = max(xy[0][-1] for xy in xy_list)
minx = 0
for (i, (x, y)) in enumerate(xy_list):
color = COLORS[i]
color = COLORS[i % len(COLORS)]
plt.scatter(x, y, s=2)
x, y_mean = window_func(x, y, EPISODES_WINDOW, np.mean) #So returns average of last EPISODE_WINDOW episodes
plt.plot(x, y_mean, color=color)
@@ -62,19 +62,18 @@ def plot_curves(xy_list, xaxis, yaxis, title):
fig.canvas.mpl_connect('resize_event', lambda event: plt.tight_layout())
plt.grid(True)
def plot_results(dirs, num_timesteps, xaxis, yaxis, task_name):
tslist = []
for dir in dirs:
ts = load_results(dir)
ts = ts[ts.l.cumsum() <= num_timesteps]
tslist.append(ts)
xy_list = [ts2xy(ts, xaxis, yaxis) for ts in tslist]
plot_curves(xy_list, xaxis, yaxis, task_name)
def split_by_task(taskpath):
return taskpath['dirname'].split('/')[-1].split('-')[0]
def plot_results(dirs, num_timesteps=10e6, xaxis=X_TIMESTEPS, yaxis=Y_REWARD, title='', split_fn=split_by_task):
results = plot_util.load_results(dirs)
plot_util.plot_results(results, xy_fn=lambda r: ts2xy(r['monitor'], xaxis, yaxis), split_fn=split_fn, average_group=True, resample=int(1e6))
# Example usage in jupyter-notebook
# from baselines import log_viewer
# from baselines.results_plotter import plot_results
# %matplotlib inline
# log_viewer.plot_results(["./log"], 10e6, log_viewer.X_TIMESTEPS, "Breakout")
# plot_results("./log")
# Here ./log is a directory containing the monitor.csv files
def main():

View File

@@ -181,11 +181,11 @@ def parse_cmdline_kwargs(args):
def main():
def main(args):
# configure logger, disable logging in child MPI processes (with rank > 0)
arg_parser = common_arg_parser()
args, unknown_args = arg_parser.parse_known_args()
args, unknown_args = arg_parser.parse_known_args(args)
extra_args = parse_cmdline_kwargs(unknown_args)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
@@ -220,5 +220,7 @@ def main():
env.close()
return model
if __name__ == '__main__':
main()
main(sys.argv)

808
docs/viz/viz.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,136 +0,0 @@
# Loading and visualizing results ([colab notebook](https://colab.research.google.com/drive/1Wez1SA9PmNkCoYc8Fvl53bhU3F8OffGm))
In order to compare performance of algorithms, we often would like to visualize learning curves (reward as a function of time steps), or some other auxiliary information about learning
aggregated into a plot. Baselines repo provides tools for doing so in several different ways, depending on the goal.
## Preliminaries
For all algorithms in baselines summary data is saved into a folder defined by logger. By default, a folder `$TMPDIR/openai-<date>-<time>` is used;
you can see the location of logger directory at the beginning of the training in the message like this:
```
Logging to /var/folders/mq/tgrn7bs17s1fnhlwt314b2fm0000gn/T/openai-2018-10-29-15-03-13-537078
```
The location can be changed by changing `OPENAI_LOGDIR` environment variable; for instance:
```bash
export OPENAI_LOGDIR=$HOME/logs/cartpole-ppo
python -m baselines.run --alg=ppo2 --env=CartPole-v0 --num_timesteps=30000 --nsteps=128
```
will log data to `~/logs/cartpole-ppo`.
## Using TensorBoard
One of the most straightforward ways to visualize data is to use [TensorBoard](https://www.tensorflow.org/guide/summaries_and_tensorboard). Baselines logger can dump data in tensorboard-compatible format; to
set that up, set environment variables `OPENAI_LOG_FORMAT`
```bash
export OPENAI_LOG_FORMAT='stdout,log,csv,tensorboard' # formats are comma-separated, but for tensorboard you only really need the last one
```
And you can now start TensorBoard with:
```bash
tensorboard --logdir=$OPENAI_LOGDIR
```
## Loading summaries of the results
If the summary overview provided by tensorboard is not sufficient, and you would like to either access to raw environment episode data, or use complex post-processing notavailable in tensorboard, you can load results into python as [pandas](https://pandas.pydata.org/) dataframes.
For instance, the following snippet:
```python
from baselines.common import plot_util as pu
results = pu.load_results('~/logs/cartpole-ppo')
```
will search for all folders with baselines-compatible results in `~/logs/cartpole-ppo` and subfolders and
return a list of Result objects. Each Result object is a named tuple with the following fields:
- dirname: str - name of the folder from which data was loaded
- metadata: dict) - dictionary with various metadata (read from metadata.json file)
- progress: pandas.DataFrame - tabular data saved by logger as a pandas dataframe. Available if csv is in logger formats.
- monitor: pandas.DataFrame - raw episode data (length, episode reward, timestamp). Available if environment wrapped with [Monitor](../../baselines/bench/monitor.py) wrapper
## Plotting: single- and few curve plots
Once results are loaded, they can be plotted in all conventional means. For example:
```python
import matplotlib.pyplot as plt
import numpy as np
r = results[0]
plt.plot(np.cumsum(r.monitor.l), r.monitor.r)
```
will print a (very noisy learning curve) for CartPole (assuming we ran the training command for CartPole above). Note the cumulative sum trick to get convert length of the episode into number of time steps taken so far.
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%204.44.46%20PM.png" width="500">
We can get a smoothened version of the same curve by using `plot_util.smooth()` function:
```python
plt.plot(np.cumsum(r.monitor.l), pu.smooth(r.monitor.r, radius=10))
```
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%204.49.13%20PM.png" width="730">
We can also get a similar curve by using logger summaries (instead of raw episode data in monitor.csv):
```python
plt.plot(r.progress.total_timesteps, r.progress.eprewmean)
```
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%205.04.31%20PM.png" width="730">
Note, however, that raw episode data is stored by the Monitor wrapper, and hence looks similar for all algorithms, whereas progress data
is handled by the algorithm itself, and hence can vary (column names, type of data available) between algorithms.
## Plotting: many curves
While the loading and the plotting functions described above in principle give you access to any slice of the training summaries,
sometimes it is necessary to plot and compare many training runs (multiple algorithms, multiple seeds for random number generator),
and usage of the functions above can get tedious and messy. For that case, `baselines.common.plot_util` provides convenience function
`plot_results` that handles multiple Result objects that need to be routed in multiple plots. Consider the following bash snippet that
runs ppo2 with cartpole with 6 different seeds for 30k time steps, first with batch size 32, and then with batch size 128:
```bash
for seed in $(seq 0 5); do
OPENAI_LOGDIR=$HOME/logs/cartpole-ppo/b32-$seed python -m baselines.run --alg=ppo2 --env=CartPole-v0 --num_timesteps=3e4 --seed=$seed --nsteps=32
done
for seed in $(seq 0 5); do
OPENAI_LOGDIR=$HOME/logs/cartpole-ppo/b128-$seed python -m baselines.run --alg=ppo2 --env=CartPole-v0 --num_timesteps=3e4 --seed=$seed --nsteps=128
done
```
These 12 runs can be loaded just as before:
```python
results = pu.load_results('~/logs/cartpole-ppo')
```
But how do we plot all 12 of them in a sensible manner? `baselines.common.plot_util` module provides `plot_results` function to do just that:
```
results = results[1:]
pu.plot_results(results)
```
(note that now the length of the results list is 13, due to the data from the previous run stored directly in `~/logs/cartpole-ppo`; we discard first element for the same reason)
The results are split into two groups based on batch size and are plotted on a separate graph. More specifically, by default `plot_results` considers digits after dash at the end of the directory name to be seed id and groups the runs that differ only by those together.
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-10-29%20at%205.53.45%20PM.png" width="700">
Showing all seeds on the same plot may be somewhat hard to comprehend and analyse. We can instead average over all seeds via the following command:
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-11-02%20at%204.42.52%20PM.png" width="720">
The lighter shade shows the standard deviation of data, and darker shade -
error in estimate of the mean (that is, standard deviation divided by square root of number of seeds).
Note that averaging over seeds requires resampling to a common grid, which, in turn, requires smoothing
(using language of signal processing, we need to do low-pass filtering before resampling to avoid aliasing effects).
You can change the amount of smoothing by adjusting `resample` and `smooth_step` arguments to achieve desired smoothing effect
See the docstring of `plot_util` function for more info.
To plot both groups on the same graph, we can use the following:
```python
pu.plot_results(results, average_group=True, split_fn=lambda _: '')
```
Option `split_fn=labmda _:'' ` effectively disables splitting, so that all curves end up on the same panel.
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-11-06%20at%203.11.51%20PM.png" width=720>
Now, with many groups the overlapping shaded regions may start looking messy. We can disable either
light shaded region (corresponding to standard deviation of the curves in the group) or darker shaded region
(corresponding to the error in mean estimate) by using `shaded_std=False` or `shaded_err=False` options respectively.
For instance,
```python
pu.plot_results(results, average_group=True, split_fn=lambda _: '', shaded_std=False)
```
produces the following plot:
<img src="https://storage.googleapis.com/baselines/assets/viz/Screen%20Shot%202018-11-06%20at%203.12.02%20PM.png" width=820>