Compare commits
24 Commits
peterz_viz
...
peterz_383
Author | SHA1 | Date | |
---|---|---|---|
|
cddd97bd2d | ||
|
146bbf886b | ||
|
f3a5abaeeb | ||
|
97e039127f | ||
|
25ecb64821 | ||
|
7dc6bc7c70 | ||
|
7139a66d33 | ||
|
8607dca99e | ||
|
9f9835fe38 | ||
|
d3fed181b5 | ||
|
339d5640b9 | ||
|
a75bc37a40 | ||
|
87b3a04a38 | ||
|
c5b1a1b643 | ||
|
c59a10947d | ||
|
5cd66010dc | ||
|
0a13da8dfe | ||
|
18b6390be6 | ||
|
52255beda5 | ||
|
d80acbb4d1 | ||
|
556b198454 | ||
|
cc88804042 | ||
|
c14d307834 | ||
|
0b71d4c6c4 |
@@ -1,3 +1,5 @@
|
||||
**Status:** Active (under active development, breaking changes may occur)
|
||||
|
||||
<img src="data/logo.jpg" width=25% align="right" /> [](https://travis-ci.org/openai/baselines)
|
||||
|
||||
# Baselines
|
||||
|
@@ -37,9 +37,6 @@ class Runner(AbstractEnvRunner):
|
||||
obs, rewards, dones, _ = self.env.step(actions)
|
||||
self.states = states
|
||||
self.dones = dones
|
||||
for n, done in enumerate(dones):
|
||||
if done:
|
||||
self.obs[n] = self.obs[n]*0
|
||||
self.obs = obs
|
||||
mb_rewards.append(rewards)
|
||||
mb_dones.append(self.dones)
|
||||
|
@@ -72,8 +72,8 @@ class EpisodicLifeEnv(gym.Wrapper):
|
||||
# then update lives to handle bonus lives
|
||||
lives = self.env.unwrapped.ale.lives()
|
||||
if lives < self.lives and lives > 0:
|
||||
# for Qbert sometimes we stay in lives == 0 condtion for a few frames
|
||||
# so its important to keep lives > 0, so that we only reset once
|
||||
# for Qbert sometimes we stay in lives == 0 condition for a few frames
|
||||
# so it's important to keep lives > 0, so that we only reset once
|
||||
# the environment advertises done.
|
||||
done = True
|
||||
self.lives = lives
|
||||
@@ -129,18 +129,26 @@ class ClipRewardEnv(gym.RewardWrapper):
|
||||
return np.sign(reward)
|
||||
|
||||
class WarpFrame(gym.ObservationWrapper):
|
||||
def __init__(self, env):
|
||||
def __init__(self, env, width=84, height=84, grayscale=True):
|
||||
"""Warp frames to 84x84 as done in the Nature paper and later work."""
|
||||
gym.ObservationWrapper.__init__(self, env)
|
||||
self.width = 84
|
||||
self.height = 84
|
||||
self.observation_space = spaces.Box(low=0, high=255,
|
||||
shape=(self.height, self.width, 1), dtype=np.uint8)
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.grayscale = grayscale
|
||||
if self.grayscale:
|
||||
self.observation_space = spaces.Box(low=0, high=255,
|
||||
shape=(self.height, self.width, 1), dtype=np.uint8)
|
||||
else:
|
||||
self.observation_space = spaces.Box(low=0, high=255,
|
||||
shape=(self.height, self.width, 3), dtype=np.uint8)
|
||||
|
||||
def observation(self, frame):
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
||||
if self.grayscale:
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
||||
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
|
||||
return frame[:, :, None]
|
||||
if self.grayscale:
|
||||
frame = np.expand_dims(frame, -1)
|
||||
return frame
|
||||
|
||||
class FrameStack(gym.Wrapper):
|
||||
def __init__(self, env, k):
|
||||
@@ -156,7 +164,7 @@ class FrameStack(gym.Wrapper):
|
||||
self.k = k
|
||||
self.frames = deque([], maxlen=k)
|
||||
shp = env.observation_space.shape
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=env.observation_space.dtype)
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[:-1] + (shp[-1] * k,)), dtype=env.observation_space.dtype)
|
||||
|
||||
def reset(self):
|
||||
ob = self.env.reset()
|
||||
@@ -197,7 +205,7 @@ class LazyFrames(object):
|
||||
|
||||
def _force(self):
|
||||
if self._out is None:
|
||||
self._out = np.concatenate(self._frames, axis=2)
|
||||
self._out = np.concatenate(self._frames, axis=-1)
|
||||
self._frames = None
|
||||
return self._out
|
||||
|
||||
|
@@ -62,7 +62,7 @@ class CategoricalPdType(PdType):
|
||||
def pdclass(self):
|
||||
return CategoricalPd
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
||||
pdparam = _matching_fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
def param_shape(self):
|
||||
@@ -82,7 +82,7 @@ class MultiCategoricalPdType(PdType):
|
||||
return MultiCategoricalPd(self.ncats, flat)
|
||||
|
||||
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
||||
pdparam = _matching_fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
def param_shape(self):
|
||||
@@ -99,7 +99,7 @@ class DiagGaussianPdType(PdType):
|
||||
return DiagGaussianPd
|
||||
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
mean = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
logstd = tf.get_variable(name='pi/logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
|
||||
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
|
||||
return self.pdfromflat(pdparam), mean
|
||||
@@ -123,7 +123,7 @@ class BernoulliPdType(PdType):
|
||||
def sample_dtype(self):
|
||||
return tf.int32
|
||||
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
|
||||
pdparam = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
pdparam = _matching_fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
|
||||
return self.pdfromflat(pdparam), pdparam
|
||||
|
||||
# WRONG SECOND DERIVATIVES
|
||||
@@ -345,3 +345,9 @@ def validate_probtype(probtype, pdparam):
|
||||
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
|
||||
print('ok on', probtype, pdparam)
|
||||
|
||||
|
||||
def _matching_fc(tensor, name, size, init_scale, init_bias):
|
||||
if tensor.shape[-1] == size:
|
||||
return tensor
|
||||
else:
|
||||
return fc(tensor, name, size, init_scale=init_scale, init_bias=init_bias)
|
||||
|
@@ -132,10 +132,8 @@ class MovieRecord(gym.Wrapper):
|
||||
self.epcount = 0
|
||||
def reset(self):
|
||||
if self.epcount % self.k == 0:
|
||||
print('saving movie this episode', self.savedir)
|
||||
self.env.unwrapped.movie_path = self.savedir
|
||||
else:
|
||||
print('not saving this episode')
|
||||
self.env.unwrapped.movie_path = None
|
||||
self.env.unwrapped.movie = None
|
||||
self.epcount += 1
|
||||
|
@@ -103,9 +103,9 @@ def test_coexistence(learn_fn, network_fn):
|
||||
kwargs.update(learn_kwargs[learn_fn])
|
||||
|
||||
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
|
||||
make_session(make_default=True, graph=tf.Graph());
|
||||
make_session(make_default=True, graph=tf.Graph())
|
||||
model1 = learn(seed=1)
|
||||
make_session(make_default=True, graph=tf.Graph());
|
||||
make_session(make_default=True, graph=tf.Graph())
|
||||
model2 = learn(seed=2)
|
||||
|
||||
model1.step(env.observation_space.sample())
|
||||
|
@@ -165,6 +165,10 @@ def function(inputs, outputs, updates=None, givens=None):
|
||||
outputs: [tf.Variable] or tf.Variable
|
||||
list of outputs or a single output to be returned from function. Returned
|
||||
value will also have the same shape.
|
||||
updates: [tf.Operation] or tf.Operation
|
||||
list of update functions or single update function that will be run whenever
|
||||
the function is called. The return is ignored.
|
||||
|
||||
"""
|
||||
if isinstance(outputs, list):
|
||||
return _Function(inputs, outputs, updates, givens=givens)
|
||||
|
@@ -67,7 +67,6 @@ class DDPG(object):
|
||||
def __init__(self, actor, critic, memory, observation_shape, action_shape, param_noise=None, action_noise=None,
|
||||
gamma=0.99, tau=0.001, normalize_returns=False, enable_popart=False, normalize_observations=True,
|
||||
batch_size=128, observation_range=(-5., 5.), action_range=(-1., 1.), return_range=(-np.inf, np.inf),
|
||||
adaptive_param_noise=True, adaptive_param_noise_policy_threshold=.1,
|
||||
critic_l2_reg=0., actor_lr=1e-4, critic_lr=1e-3, clip_norm=None, reward_scale=1.):
|
||||
# Inputs.
|
||||
self.obs0 = tf.placeholder(tf.float32, shape=(None,) + observation_shape, name='obs0')
|
||||
@@ -186,7 +185,7 @@ class DDPG(object):
|
||||
normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1])
|
||||
self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
|
||||
if self.critic_l2_reg > 0.:
|
||||
critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name]
|
||||
critic_reg_vars = [var for var in self.critic.trainable_vars if var.name.endswith('/w:0') and 'output' not in var.name]
|
||||
for var in critic_reg_vars:
|
||||
logger.info(' regularizing: {}'.format(var.name))
|
||||
logger.info(' applying l2 regularization with {}'.format(self.critic_l2_reg))
|
||||
|
@@ -42,7 +42,7 @@ class Critic(Model):
|
||||
with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE):
|
||||
x = tf.concat([obs, action], axis=-1) # this assumes observation and action can be concatenated
|
||||
x = self.network_builder(x)
|
||||
x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
|
||||
x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3), name='output')
|
||||
return x
|
||||
|
||||
@property
|
||||
|
17
baselines/ddpg/test_smoke.py
Normal file
17
baselines/ddpg/test_smoke.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from baselines.run import main as M
|
||||
|
||||
def _run(argstr):
|
||||
M(('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr).split(' '))
|
||||
|
||||
def test_popart():
|
||||
_run('--normalize_returns=True --popart=True')
|
||||
|
||||
def test_noise_normal():
|
||||
_run('--noise_type=normal_0.1')
|
||||
|
||||
def test_noise_ou():
|
||||
_run('--noise_type=ou_0.1')
|
||||
|
||||
def test_noise_adaptive():
|
||||
_run('--noise_type=adaptive-param_0.2,normal_0.1')
|
||||
|
@@ -5,4 +5,4 @@ from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
|
||||
|
||||
def wrap_atari_dqn(env):
|
||||
from baselines.common.atari_wrappers import wrap_deepmind
|
||||
return wrap_deepmind(env, frame_stack=True, scale=True)
|
||||
return wrap_deepmind(env, frame_stack=True, scale=False)
|
||||
|
@@ -33,7 +33,7 @@ The functions in this file can are used to create the following functions:
|
||||
stochastic: bool
|
||||
if set to False all the actions are always deterministic (default False)
|
||||
update_eps_ph: float
|
||||
update epsilon a new value, if negative not update happens
|
||||
update epsilon to a new value, if negative no update happens
|
||||
(default: no update)
|
||||
reset_ph: bool
|
||||
reset the perturbed policy by sampling a new perturbation
|
||||
|
@@ -2,9 +2,9 @@ import tensorflow as tf
|
||||
import tensorflow.contrib.layers as layers
|
||||
|
||||
|
||||
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False):
|
||||
def _mlp(hiddens, input_, num_actions, scope, reuse=False, layer_norm=False):
|
||||
with tf.variable_scope(scope, reuse=reuse):
|
||||
out = inpt
|
||||
out = input_
|
||||
for hidden in hiddens:
|
||||
out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None)
|
||||
if layer_norm:
|
||||
@@ -21,6 +21,9 @@ def mlp(hiddens=[], layer_norm=False):
|
||||
----------
|
||||
hiddens: [int]
|
||||
list of sizes of hidden layers
|
||||
layer_norm: bool
|
||||
if true applies layer normalization for every layer
|
||||
as described in https://arxiv.org/abs/1607.06450
|
||||
|
||||
Returns
|
||||
-------
|
||||
@@ -30,9 +33,9 @@ def mlp(hiddens=[], layer_norm=False):
|
||||
return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
|
||||
|
||||
|
||||
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
|
||||
def _cnn_to_mlp(convs, hiddens, dueling, input_, num_actions, scope, reuse=False, layer_norm=False):
|
||||
with tf.variable_scope(scope, reuse=reuse):
|
||||
out = inpt
|
||||
out = input_
|
||||
with tf.variable_scope("convnet"):
|
||||
for num_outputs, kernel_size, stride in convs:
|
||||
out = layers.convolution2d(out,
|
||||
@@ -72,7 +75,7 @@ def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
convs: [(int, int int)]
|
||||
convs: [(int, int, int)]
|
||||
list of convolutional layers in form of
|
||||
(num_outputs, kernel_size, stride)
|
||||
hiddens: [int]
|
||||
@@ -80,6 +83,9 @@ def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
|
||||
dueling: bool
|
||||
if true double the output MLP to compute a baseline
|
||||
for action scores
|
||||
layer_norm: bool
|
||||
if true applies layer normalization for every layer
|
||||
as described in https://arxiv.org/abs/1607.06450
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@@ -367,8 +367,6 @@ class DDPG(object):
|
||||
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
|
||||
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
|
||||
|
||||
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
|
||||
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
|
||||
Q_grads_tf = tf.gradients(self.Q_loss_tf, self._vars('main/Q'))
|
||||
pi_grads_tf = tf.gradients(self.pi_loss_tf, self._vars('main/pi'))
|
||||
assert len(self._vars('main/Q')) == len(Q_grads_tf)
|
||||
|
@@ -54,7 +54,7 @@ class HumanOutputFormat(KVWriter, SeqWriter):
|
||||
# Write out the data
|
||||
dashes = '-' * (keywidth + valwidth + 7)
|
||||
lines = [dashes]
|
||||
for (key, val) in sorted(key2str.items()):
|
||||
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
|
||||
lines.append('| %s%s | %s%s |' % (
|
||||
key,
|
||||
' ' * (keywidth - len(key)),
|
||||
|
@@ -97,7 +97,7 @@ def learn(env, policy_fn, *,
|
||||
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
|
||||
|
||||
lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule
|
||||
clip_param = clip_param * lrmult # Annealed cliping parameter epislon
|
||||
clip_param = clip_param * lrmult # Annealed clipping parameter epsilon
|
||||
|
||||
ob = U.get_placeholder_cached(name="ob")
|
||||
ac = pi.pdtype.sample_placeholder([None])
|
||||
|
76
baselines/ppo2/microbatched_model.py
Normal file
76
baselines/ppo2/microbatched_model.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from baselines.ppo2.model import Model
|
||||
|
||||
class MicrobatchedModel(Model):
|
||||
"""
|
||||
Model that does training one microbatch at a time - when gradient computation
|
||||
on the entire minibatch causes some overflow
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size):
|
||||
|
||||
self.nmicrobatches = nbatch_train // microbatch_size
|
||||
self.microbatch_size = microbatch_size
|
||||
assert nbatch_train % microbatch_size == 0, 'microbatch_size ({}) should divide nbatch_train ({}) evenly'.format(microbatch_size, nbatch_train)
|
||||
|
||||
super().__init__(
|
||||
policy=policy,
|
||||
ob_space=ob_space,
|
||||
ac_space=ac_space,
|
||||
nbatch_act=nbatch_act,
|
||||
nbatch_train=microbatch_size,
|
||||
nsteps=nsteps,
|
||||
ent_coef=ent_coef,
|
||||
vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm)
|
||||
|
||||
self.grads_ph = [tf.placeholder(dtype=g.dtype, shape=g.shape) for g in self.grads]
|
||||
grads_ph_and_vars = list(zip(self.grads_ph, self.var))
|
||||
self._apply_gradients_op = self.trainer.apply_gradients(grads_ph_and_vars)
|
||||
|
||||
|
||||
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
assert states is None, "microbatches with recurrent models are not supported yet"
|
||||
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
# Returns = R + yV(s')
|
||||
advs = returns - values
|
||||
|
||||
# Normalize the advantages
|
||||
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
|
||||
|
||||
# Initialize empty list for per-microbatch stats like pg_loss, vf_loss, entropy, approxkl (whatever is in self.stats_list)
|
||||
stats_vs = []
|
||||
|
||||
for microbatch_idx in range(self.nmicrobatches):
|
||||
_sli = range(microbatch_idx * self.microbatch_size, (microbatch_idx+1) * self.microbatch_size)
|
||||
td_map = {
|
||||
self.train_model.X: obs[_sli],
|
||||
self.A:actions[_sli],
|
||||
self.ADV:advs[_sli],
|
||||
self.R:returns[_sli],
|
||||
self.CLIPRANGE:cliprange,
|
||||
self.OLDNEGLOGPAC:neglogpacs[_sli],
|
||||
self.OLDVPRED:values[_sli]
|
||||
}
|
||||
|
||||
# Compute gradient on a microbatch (note that variables do not change here) ...
|
||||
grad_v, stats_v = self.sess.run([self.grads, self.stats_list], td_map)
|
||||
if microbatch_idx == 0:
|
||||
sum_grad_v = grad_v
|
||||
else:
|
||||
# .. and add to the total of the gradients
|
||||
for i, g in enumerate(grad_v):
|
||||
sum_grad_v[i] += g
|
||||
stats_vs.append(stats_v)
|
||||
|
||||
feed_dict = {ph: sum_g / self.nmicrobatches for ph, sum_g in zip(self.grads_ph, sum_grad_v)}
|
||||
feed_dict[self.LR] = lr
|
||||
# Update variables using average of the gradients
|
||||
self.sess.run(self._apply_gradients_op, feed_dict)
|
||||
# Return average of the stats
|
||||
return np.mean(np.array(stats_vs), axis=0).tolist()
|
||||
|
||||
|
||||
|
156
baselines/ppo2/model.py
Normal file
156
baselines/ppo2/model.py
Normal file
@@ -0,0 +1,156 @@
|
||||
import tensorflow as tf
|
||||
import functools
|
||||
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
from baselines.common.tf_util import initialize
|
||||
|
||||
try:
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
from mpi4py import MPI
|
||||
from baselines.common.mpi_util import sync_from_root
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
class Model(object):
|
||||
"""
|
||||
We use this object to :
|
||||
__init__:
|
||||
- Creates the step_model
|
||||
- Creates the train_model
|
||||
|
||||
train():
|
||||
- Make the training part (feedforward and retropropagation of gradients)
|
||||
|
||||
save/load():
|
||||
- Save load the model
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size=None):
|
||||
self.sess = sess = get_session()
|
||||
|
||||
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
|
||||
# CREATE OUR TWO MODELS
|
||||
# act_model that is used for sampling
|
||||
act_model = policy(nbatch_act, 1, sess)
|
||||
|
||||
# Train model for training
|
||||
if microbatch_size is None:
|
||||
train_model = policy(nbatch_train, nsteps, sess)
|
||||
else:
|
||||
train_model = policy(microbatch_size, nsteps, sess)
|
||||
|
||||
# CREATE THE PLACEHOLDERS
|
||||
self.A = A = train_model.pdtype.sample_placeholder([None])
|
||||
self.ADV = ADV = tf.placeholder(tf.float32, [None])
|
||||
self.R = R = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old actor
|
||||
self.OLDNEGLOGPAC = OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old critic
|
||||
self.OLDVPRED = OLDVPRED = tf.placeholder(tf.float32, [None])
|
||||
self.LR = LR = tf.placeholder(tf.float32, [])
|
||||
# Cliprange
|
||||
self.CLIPRANGE = CLIPRANGE = tf.placeholder(tf.float32, [])
|
||||
|
||||
neglogpac = train_model.pd.neglogp(A)
|
||||
|
||||
# Calculate the entropy
|
||||
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
|
||||
entropy = tf.reduce_mean(train_model.pd.entropy())
|
||||
|
||||
# CALCULATE THE LOSS
|
||||
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
|
||||
|
||||
# Clip the value to reduce variability during Critic training
|
||||
# Get the predicted value
|
||||
vpred = train_model.vf
|
||||
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
|
||||
# Unclipped value
|
||||
vf_losses1 = tf.square(vpred - R)
|
||||
# Clipped value
|
||||
vf_losses2 = tf.square(vpredclipped - R)
|
||||
|
||||
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
|
||||
|
||||
# Calculate ratio (pi current policy / pi old policy)
|
||||
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
|
||||
|
||||
# Defining Loss = - J is equivalent to max J
|
||||
pg_losses = -ADV * ratio
|
||||
|
||||
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
|
||||
|
||||
# Final PG loss
|
||||
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
|
||||
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
|
||||
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
|
||||
|
||||
# Total loss
|
||||
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
|
||||
|
||||
# UPDATE THE PARAMETERS USING LOSS
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
if MPI is not None:
|
||||
self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
else:
|
||||
self.trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
grads_and_var = self.trainer.compute_gradients(loss, params)
|
||||
grads, var = zip(*grads_and_var)
|
||||
|
||||
if max_grad_norm is not None:
|
||||
# Clip the gradients (normalize)
|
||||
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
|
||||
grads_and_var = list(zip(grads, var))
|
||||
# zip aggregate each gradient with parameters associated
|
||||
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
|
||||
|
||||
self.grads = grads
|
||||
self.var = var
|
||||
self._train_op = self.trainer.apply_gradients(grads_and_var)
|
||||
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
|
||||
self.stats_list = [pg_loss, vf_loss, entropy, approxkl, clipfrac]
|
||||
|
||||
|
||||
self.train_model = train_model
|
||||
self.act_model = act_model
|
||||
self.step = act_model.step
|
||||
self.value = act_model.value
|
||||
self.initial_state = act_model.initial_state
|
||||
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
|
||||
initialize()
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
if MPI is not None:
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
|
||||
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
# Returns = R + yV(s')
|
||||
advs = returns - values
|
||||
|
||||
# Normalize the advantages
|
||||
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
|
||||
|
||||
td_map = {
|
||||
self.train_model.X : obs,
|
||||
self.A : actions,
|
||||
self.ADV : advs,
|
||||
self.R : returns,
|
||||
self.LR : lr,
|
||||
self.CLIPRANGE : cliprange,
|
||||
self.OLDNEGLOGPAC : neglogpacs,
|
||||
self.OLDVPRED : values
|
||||
}
|
||||
if states is not None:
|
||||
td_map[self.train_model.S] = states
|
||||
td_map[self.train_model.M] = masks
|
||||
|
||||
return self.sess.run(
|
||||
self.stats_list + [self._train_op],
|
||||
td_map
|
||||
)[:-1]
|
||||
|
@@ -1,226 +1,17 @@
|
||||
import os
|
||||
import time
|
||||
import functools
|
||||
import numpy as np
|
||||
import os.path as osp
|
||||
import tensorflow as tf
|
||||
from baselines import logger
|
||||
from collections import deque
|
||||
from baselines.common import explained_variance, set_global_seeds
|
||||
from baselines.common.policies import build_policy
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
|
||||
try:
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
from mpi4py import MPI
|
||||
from baselines.common.mpi_util import sync_from_root
|
||||
except ImportError:
|
||||
MPI = None
|
||||
from baselines.ppo2.runner import Runner
|
||||
|
||||
from baselines.common.tf_util import initialize
|
||||
|
||||
class Model(object):
|
||||
"""
|
||||
We use this object to :
|
||||
__init__:
|
||||
- Creates the step_model
|
||||
- Creates the train_model
|
||||
|
||||
train():
|
||||
- Make the training part (feedforward and retropropagation of gradients)
|
||||
|
||||
save/load():
|
||||
- Save load the model
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm):
|
||||
sess = get_session()
|
||||
|
||||
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
|
||||
# CREATE OUR TWO MODELS
|
||||
# act_model that is used for sampling
|
||||
act_model = policy(nbatch_act, 1, sess)
|
||||
|
||||
# Train model for training
|
||||
train_model = policy(nbatch_train, nsteps, sess)
|
||||
|
||||
# CREATE THE PLACEHOLDERS
|
||||
A = train_model.pdtype.sample_placeholder([None])
|
||||
ADV = tf.placeholder(tf.float32, [None])
|
||||
R = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old actor
|
||||
OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old critic
|
||||
OLDVPRED = tf.placeholder(tf.float32, [None])
|
||||
LR = tf.placeholder(tf.float32, [])
|
||||
# Cliprange
|
||||
CLIPRANGE = tf.placeholder(tf.float32, [])
|
||||
|
||||
neglogpac = train_model.pd.neglogp(A)
|
||||
|
||||
# Calculate the entropy
|
||||
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
|
||||
entropy = tf.reduce_mean(train_model.pd.entropy())
|
||||
|
||||
# CALCULATE THE LOSS
|
||||
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
|
||||
|
||||
# Clip the value to reduce variability during Critic training
|
||||
# Get the predicted value
|
||||
vpred = train_model.vf
|
||||
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
|
||||
# Unclipped value
|
||||
vf_losses1 = tf.square(vpred - R)
|
||||
# Clipped value
|
||||
vf_losses2 = tf.square(vpredclipped - R)
|
||||
|
||||
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
|
||||
|
||||
# Calculate ratio (pi current policy / pi old policy)
|
||||
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
|
||||
|
||||
# Defining Loss = - J is equivalent to max J
|
||||
pg_losses = -ADV * ratio
|
||||
|
||||
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
|
||||
|
||||
# Final PG loss
|
||||
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
|
||||
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
|
||||
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
|
||||
|
||||
# Total loss
|
||||
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
|
||||
|
||||
# UPDATE THE PARAMETERS USING LOSS
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
if MPI is not None:
|
||||
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
else:
|
||||
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
grads_and_var = trainer.compute_gradients(loss, params)
|
||||
grads, var = zip(*grads_and_var)
|
||||
|
||||
if max_grad_norm is not None:
|
||||
# Clip the gradients (normalize)
|
||||
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
|
||||
grads_and_var = list(zip(grads, var))
|
||||
# zip aggregate each gradient with parameters associated
|
||||
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
|
||||
|
||||
_train = trainer.apply_gradients(grads_and_var)
|
||||
|
||||
def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
# Returns = R + yV(s')
|
||||
advs = returns - values
|
||||
|
||||
# Normalize the advantages
|
||||
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
|
||||
td_map = {train_model.X:obs, A:actions, ADV:advs, R:returns, LR:lr,
|
||||
CLIPRANGE:cliprange, OLDNEGLOGPAC:neglogpacs, OLDVPRED:values}
|
||||
if states is not None:
|
||||
td_map[train_model.S] = states
|
||||
td_map[train_model.M] = masks
|
||||
return sess.run(
|
||||
[pg_loss, vf_loss, entropy, approxkl, clipfrac, _train],
|
||||
td_map
|
||||
)[:-1]
|
||||
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
|
||||
|
||||
|
||||
self.train = train
|
||||
self.train_model = train_model
|
||||
self.act_model = act_model
|
||||
self.step = act_model.step
|
||||
self.value = act_model.value
|
||||
self.initial_state = act_model.initial_state
|
||||
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
initialize()
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
|
||||
if MPI is not None:
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
|
||||
class Runner(AbstractEnvRunner):
|
||||
"""
|
||||
We use this object to make a mini batch of experiences
|
||||
__init__:
|
||||
- Initialize the runner
|
||||
|
||||
run():
|
||||
- Make a mini batch
|
||||
"""
|
||||
def __init__(self, *, env, model, nsteps, gamma, lam):
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
# Lambda used in GAE (General Advantage Estimation)
|
||||
self.lam = lam
|
||||
# Discount rate
|
||||
self.gamma = gamma
|
||||
|
||||
def run(self):
|
||||
# Here, we init the lists that will contain the mb of experiences
|
||||
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
|
||||
mb_states = self.states
|
||||
epinfos = []
|
||||
# For n in range number of steps
|
||||
for _ in range(self.nsteps):
|
||||
# Given observations, get action value and neglopacs
|
||||
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
|
||||
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
|
||||
mb_obs.append(self.obs.copy())
|
||||
mb_actions.append(actions)
|
||||
mb_values.append(values)
|
||||
mb_neglogpacs.append(neglogpacs)
|
||||
mb_dones.append(self.dones)
|
||||
|
||||
# Take actions in env and look the results
|
||||
# Infos contains a ton of useful informations
|
||||
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
|
||||
for info in infos:
|
||||
maybeepinfo = info.get('episode')
|
||||
if maybeepinfo: epinfos.append(maybeepinfo)
|
||||
mb_rewards.append(rewards)
|
||||
#batch of steps to batch of rollouts
|
||||
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
|
||||
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
|
||||
mb_actions = np.asarray(mb_actions)
|
||||
mb_values = np.asarray(mb_values, dtype=np.float32)
|
||||
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
|
||||
mb_dones = np.asarray(mb_dones, dtype=np.bool)
|
||||
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
|
||||
|
||||
# discount/bootstrap off value fn
|
||||
mb_returns = np.zeros_like(mb_rewards)
|
||||
mb_advs = np.zeros_like(mb_rewards)
|
||||
lastgaelam = 0
|
||||
for t in reversed(range(self.nsteps)):
|
||||
if t == self.nsteps - 1:
|
||||
nextnonterminal = 1.0 - self.dones
|
||||
nextvalues = last_values
|
||||
else:
|
||||
nextnonterminal = 1.0 - mb_dones[t+1]
|
||||
nextvalues = mb_values[t+1]
|
||||
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
|
||||
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
|
||||
mb_returns = mb_advs + mb_values
|
||||
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
|
||||
mb_states, epinfos)
|
||||
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
|
||||
def sf01(arr):
|
||||
"""
|
||||
swap and then flatten axes 0 and 1
|
||||
"""
|
||||
s = arr.shape
|
||||
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
|
||||
|
||||
def constfn(val):
|
||||
def f(_):
|
||||
@@ -230,7 +21,7 @@ def constfn(val):
|
||||
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
|
||||
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
|
||||
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
|
||||
save_interval=0, load_path=None, **network_kwargs):
|
||||
save_interval=0, load_path=None, model_fn=None, **network_kwargs):
|
||||
'''
|
||||
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
|
||||
|
||||
@@ -308,10 +99,14 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
nbatch_train = nbatch // nminibatches
|
||||
|
||||
# Instantiate the model object (that creates act_model and train_model)
|
||||
make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
|
||||
if model_fn is None:
|
||||
from baselines.ppo2.model import Model
|
||||
model_fn = Model
|
||||
|
||||
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
|
||||
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm)
|
||||
model = make_model()
|
||||
|
||||
if load_path is not None:
|
||||
model.load(load_path)
|
||||
# Instantiate the runner object
|
||||
@@ -319,8 +114,6 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
if eval_env is not None:
|
||||
eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam)
|
||||
|
||||
|
||||
|
||||
epinfobuf = deque(maxlen=100)
|
||||
if eval_env is not None:
|
||||
eval_epinfobuf = deque(maxlen=100)
|
||||
|
76
baselines/ppo2/runner.py
Normal file
76
baselines/ppo2/runner.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import numpy as np
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
|
||||
class Runner(AbstractEnvRunner):
|
||||
"""
|
||||
We use this object to make a mini batch of experiences
|
||||
__init__:
|
||||
- Initialize the runner
|
||||
|
||||
run():
|
||||
- Make a mini batch
|
||||
"""
|
||||
def __init__(self, *, env, model, nsteps, gamma, lam):
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
# Lambda used in GAE (General Advantage Estimation)
|
||||
self.lam = lam
|
||||
# Discount rate
|
||||
self.gamma = gamma
|
||||
|
||||
def run(self):
|
||||
# Here, we init the lists that will contain the mb of experiences
|
||||
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
|
||||
mb_states = self.states
|
||||
epinfos = []
|
||||
# For n in range number of steps
|
||||
for _ in range(self.nsteps):
|
||||
# Given observations, get action value and neglopacs
|
||||
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
|
||||
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
|
||||
mb_obs.append(self.obs.copy())
|
||||
mb_actions.append(actions)
|
||||
mb_values.append(values)
|
||||
mb_neglogpacs.append(neglogpacs)
|
||||
mb_dones.append(self.dones)
|
||||
|
||||
# Take actions in env and look the results
|
||||
# Infos contains a ton of useful informations
|
||||
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
|
||||
for info in infos:
|
||||
maybeepinfo = info.get('episode')
|
||||
if maybeepinfo: epinfos.append(maybeepinfo)
|
||||
mb_rewards.append(rewards)
|
||||
#batch of steps to batch of rollouts
|
||||
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
|
||||
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
|
||||
mb_actions = np.asarray(mb_actions)
|
||||
mb_values = np.asarray(mb_values, dtype=np.float32)
|
||||
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
|
||||
mb_dones = np.asarray(mb_dones, dtype=np.bool)
|
||||
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
|
||||
|
||||
# discount/bootstrap off value fn
|
||||
mb_returns = np.zeros_like(mb_rewards)
|
||||
mb_advs = np.zeros_like(mb_rewards)
|
||||
lastgaelam = 0
|
||||
for t in reversed(range(self.nsteps)):
|
||||
if t == self.nsteps - 1:
|
||||
nextnonterminal = 1.0 - self.dones
|
||||
nextvalues = last_values
|
||||
else:
|
||||
nextnonterminal = 1.0 - mb_dones[t+1]
|
||||
nextvalues = mb_values[t+1]
|
||||
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
|
||||
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
|
||||
mb_returns = mb_advs + mb_values
|
||||
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
|
||||
mb_states, epinfos)
|
||||
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
|
||||
def sf01(arr):
|
||||
"""
|
||||
swap and then flatten axes 0 and 1
|
||||
"""
|
||||
s = arr.shape
|
||||
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
|
||||
|
||||
|
34
baselines/ppo2/test_microbatches.py
Normal file
34
baselines/ppo2/test_microbatches.py
Normal file
@@ -0,0 +1,34 @@
|
||||
import gym
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.common.tf_util import make_session
|
||||
from baselines.ppo2.ppo2 import learn
|
||||
|
||||
from baselines.ppo2.microbatched_model import MicrobatchedModel
|
||||
|
||||
def test_microbatches():
|
||||
def env_fn():
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(0)
|
||||
return env
|
||||
|
||||
learn_fn = partial(learn, network='mlp', nsteps=32, total_timesteps=32, seed=0)
|
||||
|
||||
env_ref = DummyVecEnv([env_fn])
|
||||
sess_ref = make_session(make_default=True, graph=tf.Graph())
|
||||
learn_fn(env=env_ref)
|
||||
vars_ref = {v.name: sess_ref.run(v) for v in tf.trainable_variables()}
|
||||
|
||||
env_test = DummyVecEnv([env_fn])
|
||||
sess_test = make_session(make_default=True, graph=tf.Graph())
|
||||
learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
|
||||
vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}
|
||||
|
||||
for v in vars_ref:
|
||||
np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=1e-3)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_microbatches()
|
@@ -5,7 +5,7 @@ matplotlib.use('TkAgg') # Can change to 'Agg' for non-interactive mode
|
||||
import matplotlib.pyplot as plt
|
||||
plt.rcParams['svg.fonttype'] = 'none'
|
||||
|
||||
from baselines.bench.monitor import load_results
|
||||
from baselines.common import plot_util
|
||||
|
||||
X_TIMESTEPS = 'timesteps'
|
||||
X_EPISODES = 'episodes'
|
||||
@@ -16,7 +16,7 @@ POSSIBLE_X_AXES = [X_TIMESTEPS, X_EPISODES, X_WALLTIME]
|
||||
EPISODES_WINDOW = 100
|
||||
COLORS = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple', 'pink',
|
||||
'brown', 'orange', 'teal', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise',
|
||||
'darkgreen', 'tan', 'salmon', 'gold', 'lightpurple', 'darkred', 'darkblue']
|
||||
'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']
|
||||
|
||||
def rolling_window(a, window):
|
||||
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
|
||||
@@ -50,7 +50,7 @@ def plot_curves(xy_list, xaxis, yaxis, title):
|
||||
maxx = max(xy[0][-1] for xy in xy_list)
|
||||
minx = 0
|
||||
for (i, (x, y)) in enumerate(xy_list):
|
||||
color = COLORS[i]
|
||||
color = COLORS[i % len(COLORS)]
|
||||
plt.scatter(x, y, s=2)
|
||||
x, y_mean = window_func(x, y, EPISODES_WINDOW, np.mean) #So returns average of last EPISODE_WINDOW episodes
|
||||
plt.plot(x, y_mean, color=color)
|
||||
@@ -62,19 +62,18 @@ def plot_curves(xy_list, xaxis, yaxis, title):
|
||||
fig.canvas.mpl_connect('resize_event', lambda event: plt.tight_layout())
|
||||
plt.grid(True)
|
||||
|
||||
def plot_results(dirs, num_timesteps, xaxis, yaxis, task_name):
|
||||
tslist = []
|
||||
for dir in dirs:
|
||||
ts = load_results(dir)
|
||||
ts = ts[ts.l.cumsum() <= num_timesteps]
|
||||
tslist.append(ts)
|
||||
xy_list = [ts2xy(ts, xaxis, yaxis) for ts in tslist]
|
||||
plot_curves(xy_list, xaxis, yaxis, task_name)
|
||||
|
||||
def split_by_task(taskpath):
|
||||
return taskpath['dirname'].split('/')[-1].split('-')[0]
|
||||
|
||||
def plot_results(dirs, num_timesteps=10e6, xaxis=X_TIMESTEPS, yaxis=Y_REWARD, title='', split_fn=split_by_task):
|
||||
results = plot_util.load_results(dirs)
|
||||
plot_util.plot_results(results, xy_fn=lambda r: ts2xy(r['monitor'], xaxis, yaxis), split_fn=split_fn, average_group=True, resample=int(1e6))
|
||||
|
||||
# Example usage in jupyter-notebook
|
||||
# from baselines import log_viewer
|
||||
# from baselines.results_plotter import plot_results
|
||||
# %matplotlib inline
|
||||
# log_viewer.plot_results(["./log"], 10e6, log_viewer.X_TIMESTEPS, "Breakout")
|
||||
# plot_results("./log")
|
||||
# Here ./log is a directory containing the monitor.csv files
|
||||
|
||||
def main():
|
||||
|
@@ -181,11 +181,11 @@ def parse_cmdline_kwargs(args):
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
def main(args):
|
||||
# configure logger, disable logging in child MPI processes (with rank > 0)
|
||||
|
||||
arg_parser = common_arg_parser()
|
||||
args, unknown_args = arg_parser.parse_known_args()
|
||||
args, unknown_args = arg_parser.parse_known_args(args)
|
||||
extra_args = parse_cmdline_kwargs(unknown_args)
|
||||
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
@@ -220,5 +220,7 @@ def main():
|
||||
|
||||
env.close()
|
||||
|
||||
return model
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
main(sys.argv)
|
||||
|
@@ -7,7 +7,7 @@
|
||||
"id": "Ynb-laSwmpac"
|
||||
},
|
||||
"source": [
|
||||
"# Loading and visualizing results ([open in colab](https://colab.research.google.com/github/openai/baselines/blob/master/docs/viz.ipynb))\n",
|
||||
"# Loading and visualizing results ([open in colab](https://colab.research.google.com/github/openai/baselines/blob/master/docs/viz/viz.ipynb))\n",
|
||||
"In order to compare performance of algorithms, we often would like to visualize learning curves (reward as a function of time steps), or some other auxiliary information about learning aggregated into a plot. Baselines repo provides tools for doing so in several different ways, depending on the goal."
|
||||
]
|
||||
},
|
||||
|
Reference in New Issue
Block a user