* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f3e61000cf542c50fef9 | Problem 122: Efficient exponentiation | 5 | 301749 | problem-122-efficient-exponentiation |
--description--
The most naive way of computing n^{15}
requires fourteen multiplications:
n × n × \ldots × n = n^{15}
But using a "binary" method you can compute it in six multiplications:
$$\begin{align} & n × n = n^2\\ & n^2 × n^2 = n^4\\ & n^4 × n^4 = n^8\\ & n^8 × n^4 = n^{12}\\ & n^{12} × n^2 = n^{14}\\ & n^{14} × n = n^{15} \end{align}$$
However it is yet possible to compute it in only five multiplications:
$$\begin{align} & n × n = n^2\\ & n^2 × n = n^3\\ & n^3 × n^3 = n^6\\ & n^6 × n^6 = n^{12}\\ & n^{12} × n^3 = n^{15} \end{align}$$
We shall define m(k)
to be the minimum number of multiplications to compute n^k
; for example m(15) = 5
.
For 1 ≤ k ≤ 200
, find \sum{m(k)}
.
--hints--
efficientExponentation()
should return 1582
.
assert.strictEqual(efficientExponentation(), 1582);
--seed--
--seed-contents--
function efficientExponentation() {
return true;
}
efficientExponentation();
--solutions--
// solution required