* fix: clean-up Project Euler 121-140 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: missing backticks Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
66 lines
1.2 KiB
Markdown
66 lines
1.2 KiB
Markdown
---
|
||
id: 5900f3e61000cf542c50fef9
|
||
title: 'Problem 122: Efficient exponentiation'
|
||
challengeType: 5
|
||
forumTopicId: 301749
|
||
dashedName: problem-122-efficient-exponentiation
|
||
---
|
||
|
||
# --description--
|
||
|
||
The most naive way of computing $n^{15}$ requires fourteen multiplications:
|
||
|
||
$$n × n × \ldots × n = n^{15}$$
|
||
|
||
But using a "binary" method you can compute it in six multiplications:
|
||
|
||
$$\begin{align}
|
||
& n × n = n^2\\\\
|
||
& n^2 × n^2 = n^4\\\\
|
||
& n^4 × n^4 = n^8\\\\
|
||
& n^8 × n^4 = n^{12}\\\\
|
||
& n^{12} × n^2 = n^{14}\\\\
|
||
& n^{14} × n = n^{15}
|
||
\end{align}$$
|
||
|
||
However it is yet possible to compute it in only five multiplications:
|
||
|
||
$$\begin{align}
|
||
& n × n = n^2\\\\
|
||
& n^2 × n = n^3\\\\
|
||
& n^3 × n^3 = n^6\\\\
|
||
& n^6 × n^6 = n^{12}\\\\
|
||
& n^{12} × n^3 = n^{15}
|
||
\end{align}$$
|
||
|
||
We shall define $m(k)$ to be the minimum number of multiplications to compute $n^k$; for example $m(15) = 5$.
|
||
|
||
For $1 ≤ k ≤ 200$, find $\sum{m(k)}$.
|
||
|
||
# --hints--
|
||
|
||
`efficientExponentation()` should return `1582`.
|
||
|
||
```js
|
||
assert.strictEqual(efficientExponentation(), 1582);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function efficientExponentation() {
|
||
|
||
return true;
|
||
}
|
||
|
||
efficientExponentation();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|