Files
gikf 7907f62337 fix(curriculum): clean-up Project Euler 121-140 (#42731)
* fix: clean-up Project Euler 121-140

* fix: corrections from review

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: missing backticks

Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing delimiter

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-16 21:38:37 +02:00

45 lines
1000 B
Markdown

---
id: 5900f3ef1000cf542c50ff01
title: 'Problem 129: Repunit divisibility'
challengeType: 5
forumTopicId: 301756
dashedName: problem-129-repunit-divisibility
---
# --description--
A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length $k$; for example, $R(6) = 111111$.
Given that $n$ is a positive integer and $GCD(n, 10) = 1$, it can be shown that there always exists a value, $k$, for which $R(k)$ is divisible by $n$, and let $A(n)$ be the least such value of $k$; for example, $A(7) = 6$ and $A(41) = 5$.
The least value of $n$ for which $A(n)$ first exceeds ten is 17.
Find the least value of $n$ for which $A(n)$ first exceeds one-million.
# --hints--
`repunitDivisibility()` should return `1000023`.
```js
assert.strictEqual(repunitDivisibility(), 1000023);
```
# --seed--
## --seed-contents--
```js
function repunitDivisibility() {
return true;
}
repunitDivisibility();
```
# --solutions--
```js
// solution required
```