1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4be1000cf542c50ffd0 | Задача 337: ступінчасті послідовності Ейлера | 5 | 301995 | problem-337-totient-stairstep-sequences |
--description--
Нехай \\{a_1, a_2, \ldots, a_n\\}
буде послідовністю цілих чисел довжиною n
такою, що:
a_1 = 6
- для всіх
1 ≤ i < n
:φ(a_i) < φ(a_{i + 1}) < a_i < a_{i + 1}
φ
позначає функцію Ейлера.
Нехай S(N)
буде кількістю таких послідовностей з a_n ≤ N
.
Наприклад, S(10) = 4
: {6}, {6, 8}, {6, 8, 9} та {6, 10}.
Ми можемо перевірити, що S(100) = 482\\,073\\,668
та S(10\\,000)\bmod {10}^8 = 73\\,808\\,307
.
Знайдіть S(20\\,000\\,000)\bmod {10}^8
.
--hints--
totientStairstepSequences()
має вивести 85068035
.
assert.strictEqual(totientStairstepSequences(), 85068035);
--seed--
--seed-contents--
function totientStairstepSequences() {
return true;
}
totientStairstepSequences();
--solutions--
// solution required